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A hydrodynamic model of the isothermal processes in a multicomponent viscous mixture which interacts with fixed surfaces is 
constructed. In the ste~Ldy case, the model reduces to a description using the Landau--de Gennes ftmetional. Typical solutions 
of the equations for a t ~ ' t u r e  close to a surface or when there are phase transitions are analysed. Classical surface and capillary 
phenomena are matched with these solutions. Hence, the proposed model enables time-dependent viscous flows of a liquid and 
a gas in narrow pores and well-known static surface effects to be described simultaneously, namely, the anomalous properties 
of thin films and surfao-, layers, and capillary condensation and wettability, which is one of the problems in the modern theory 
of capillary phenomena [1, 2]. 

1. We consider a multicomponent liquid or gaseous mixture which occupies a spatial domain D. 
We assume that the boundary OD is a piecewise-smooth surface which can be subdivided into two 
subsets: F1, the piecewise-smooth boundary of the immobile solid phase which interacts with the mixture, 
and F2, a piecewise-smooth impermeable surface which has no effect on the state of the mixture. 

We assume that the Latin subscripts i, j, k take the values 1 , . . . ,  N, where N is the number of 
components in the :mixture, the Latin superscripts a, b, c take the values 1-3, corresponding to a certain 
fixed Cartesian system of coordinates x' ,  the Greek superscripts ct and 13 take the values 1-3 corres- 
ponding to a certain eurvilinear system of coordinates ya and the Latin superscripts A and B take the 
values 1 and 2; suntmation is carried out over repeated indices unless otherwise stated. 

Le t  ni be the molar density of the ith component in the mixture and let m i be the corresponding molar 
mass. The thermodynamic properties of the mixture in bulk are completely defined by the free energy 
density [3, 4]f  = f (7 ,  hi), where T is the absolute temperature of the mixture. We recall that the relations 

d f  = - s d T  + lciidni, f = - p  + lc, in i (1.1) 

hold, where s is th,: entropy per unit volume, lq is the chemical potential of the ith component and 
p is the pressure. 

Only isothermal processes are considered and the dependence of all thermodynamic and physico- 
mechanical quantities on temperature will therefore henceforth be omitted. If U = U(ni), V = V(xa) ,  
W = W(y a) are certain smooth functions, we shall use the notation 

U i = O U l O n  i, 3 , V = 3 V l O x " ,  D ~ W = O W I 3 5  ,~ 

In particular, according to (1.1), the following equality holds 

f i  = gi (1.2) 

If a mixture with certain densities nio undergoes separation into K phases with densities nu and volume 
fractions of the phases sl (l = 1 , . . . ,  K) then, neglecting surface effects, the mean free energy of the 
system of separated phases is equal to 

K 

f m =  • s l f (ni l)  (1.3) 
l=l 
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Here, the densities in the phases must satisfy the conditions for the conservation of the numbers of 
molecules of the components 

K 

11i0 = E s ini l  (1.4) 
l=l 

If the free energy of the homogeneous state f0 = f(n/o) is greater than fm, then the homogeneous state 
is thermodynamically unstable with respect to its decomposition into phases. The heterogeneous state which 
ensures an absolute minimum of the functional (1.3) with respect to all virtual phase separations which 
satisfy Eq. (1.4) is thermodynamically stable. It can be shown in the standard way that the equalities [3, 4] 

r,i(nj I ) . . . . .  lgi(ni r ) (1.5) 

p(nj l  ) . . . . .  p (n j r  ) (1.6) 

hold in the ease of a stable state. 
In the special case when the free energyf is a convex function of the vector hi, homogeneous states 

are always stable in bulk. 
In order to describe the static states of a mixture, taking account of surface forces, we define the free 

energy F of a mixture in the form of the Landau--de Gennes functional 

F = I w d V  + ~ ¢odS + I p ~ d V  (1.7) 
D r t D 

1 
W = - -  V i j O a n i O a n  j + f  

2 

Here, vii = vq(nk) are the coefficients of a certain positive definite quadratic form, co = to(ni) is the 
surface energy of the interaction of the fluid with the rock, d V  is a volume element, dS  is an element 
of the surface 0/9, p = min i is the total mass density and 9 = 9(x a) is the gravitational potential. The 
absolute minimum of the functional (1.7) in the space of the distributions n i = ni(x a) which satisfy the 
supplementary conditions 

nidV = N i (1.8) 
D 

where N/is the specified number of molecules of the ith component, ensures a static state of the mixture. 
We now calculate the variations of the functionals F and Ni 

8F= S O i S n i d V  + I Fi, Sn idS+  I ¢~')i2~'1i dS 
D r I r 2 

8 N i =  S SnidV, dPk = 1 D -2 V(i'tOaniOanJ -- Vik'j~aniOanJ -- VikAni + f.k + mktP 

~rl i ~ n  i 
~k l  = ~,k - Vki "5- f '  ~k~ = -Vki  --~f-, A = 0,,0,, 

(1.9) 

Here, P is an internal normal to 0/9. 
The distribution n i = ni(x a) which minimizes the functional (1.7) subject to the supplementary condi- 

tions (1.8) must satisfy the differential relation 

8F  + ~.iSNi = 0 (1.10) 

where 7q. are the Lagrangian multipliers. The necessary (but not necessarily sufficient) conditions imposed 
on the equilibrium state of the mixture follow from relations (1.10), when account is taken of (1.9), in 
the form of a system of elliptic equations and the corresponding boundary conditions 

• ~ i  + ~.i = 0 ( 1 . 1 1 )  
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Ok1 = O, Ok2 = 0 (1.12) 

The Lagrangian multipliers must be chosen in such a way that conditions (1.8) are satisfied. If the 
distribution n i = ni(x a) is known then ~/can be found from the condition (1.11) 

1 
= - ~  I Oi  d v  (1.13) 

~.i V ( D )  o 

where V ( D )  is the volume of the domain D. According to (1.2) and (1.9), 7q = -~:i for a homogeneous 
state of  a mixture when there are no gravitational forces. 

On the basis of the theory which has been developed it is possible to calculate the stress tensor in a 
static state of the mixture. To do this, we assume that the volume D occupied by a mixture in a certain 
state (which need not be the equilibrium state) is deformed into another volume D'  such that a 
certain new state is obtained which only differs from the old state to an infinitely small extent. 

Let ni(x ~) be the old distribution and let n](x a) be the new distribution. With each point of domain 
D with coordinates x a it is possible to match a certain point of  domain D'  with coordinates 

X pa = X a + tl a 

where u a = ua(~) is a small vector which is defined in such a manner that the total mass 

(1.14) 

min i ( x a ) d V  = min'i(x 'a )dV" (1.15) 

is conserved in each individual volume. 
We now select an arbitrary subset f~ C D with a piecewise-smooth boundary which is deformed into 

a certain domain ~Y by the transformation (1.16). The free energies for the states in domains fl, f~' are 
calculated using formula (1.7) 

F .  = ~ ( w + p ~ ) d V ,  Ft~, = ~ ( w ' + p ' t p ) d V '  

The expression for the functional Fn, can be transformed into an integral over the domain fl if 
formulae (1.14) is looked upon as a coordinate transformation. In this case, it is necessary to take account 
of  equalities (1.15) and, also, the following relations, which hold with an accuracy up to the first order 
of smallness 

0nf On; (1.16) 
d V ' = ( l + O u u a )  dV,  Ox,a =(~ia b - 0 a u  h) Ox,h 

In the approximation which is linear with respect to U a, w e  have 

n ' (  x ' a  ) = ni ( xa  ) + ri ( xa  ) + qi ( xu  ) 

where ri, qi are qu~Lntities of the same order of smallness as u a which satisfy the equalities 

(1.17) 

ri(x a) = - -Obub(xa)ni (xa) ,  miq i (x  a) ----- 0 (1.18) 

By using equalities (1.16)-(1.18) and integrating by parts, we obtain (U is the outward normal to 0D) 

AF=F~,-F~=W~+W2+~+W4 

Wc = S w c d V ,  C = 1,2,3, W 4 : ~ w4dS 
3fl 

w I = oabO,u b, w z = pUaOatp, w 3 = tl)iq i 

~ab = ( _ ~ k n k  + w + ptp)~ ab - V i)~ ani~bn j 

~n i 
W 4 = Vij " ~  (r j  + qj ) 

(1.19) 
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Following the ideas in [5], we shall interpret (~ab a s  a static stress tensor, the quantity W1 as the work 
of the surface forces, WE as the work of the gravitational forces and the sum (1413 + W4) as the work of 
forces associated with mass transfer by diffusion. 

The identity 

O a(~ ab = --nkOb tl)k + pOb( p (1.20) 

holds. 
The usual conditions ofmechanical equilibrium 

O~c Uh -pOh~ =0  (1.21) 

therefore hold in the thermodynamic equilibrium state when relations (1.11) are satisfied. 
We shall now describe certain classical phenomena in a multicomponent mixture within the framework 

of the steady-state theory which has been developed. 

The structure o f  the  surface layer. Let a one-dimensional equilibrium dism"oution n i = ni(x 1) exist when 
there are no gravitational forces (q) = 0). The equilibrium equations ( 1.11 ) reduce to the Hamiltonian form 

O l ni = OH / Opi, O t Pi = - O H  / On i 

1 
Pi = vijOInj H = ~ (xijPiP i - f - kini  

(1.22) 

where (~. is a matrix which is the inverse of vii. The Hamiltonian H, which is an integral of the dynamic 
system (1.22), Is related to the stress tensor 

n = - ( ~  11 

in a simple manner. 
Thus, all the equilibrium one-dimensional distributions are described by the methods of symplectic 

geometry [6]. 
In order to describe the structure of the surface layer it is sufficient to solve problem (1.22) in the 

half-line x 1 I> 0 subject to the following boundary conditions: the equality (see (1.12)) 

Pi = O, i  (1.23) 

holds whenx I = 0 and, whenx I --> +0~, the state of the mixture tends to a certain homogeneous distrib- 
ution n i ---> nio. We note that ~/= -r~(njo) in this case. 

If a homogeneous state nio is thermodynamically state in bulk, the expression ( - f -  2qni) reaches a 
local minimum at this point. The trajectories of the Hamiltonian system (1.22), which converge when 
x I --> + ~  to the point n i = niO, Pi = 0 ,  occupy a certain N-dimensional manifold M1 in the ( 2 N -  1)- 
dimensional hyperspace 

H = - f ( n i o  ) - ~ , i n i o  (1.24) 

On the other hand, in this case the N-dimensional Lagrangian manifold (1.23) intersects the hyper- 
space (1.24) over the (N - 1)-dimensional submanifold ME. In the general case, the intersection of 
M1 and M2 is zero-dimensional, that is, it corresponds to one or several required trajectories. The model 
which has been proposed therefore enables one, in principle, to describe the structure of a layer close 
to a surface interacting with a mixture. 

Note that, according to (1.1) and (1.24), the Hamiltonian H, which is constant on the required trajec- 
tory, is equal to the hydrostatic pressure in the homogeneous state n~z. At the same time, close to the 
wall it may differ from the corresponding hydrostatic pressure (the disjoining pressure effect [1]). 

The structure o f  a straight interphase boundary.  Suppose it is required to find a solution of system (1.22) 
which tends to the homogeneous state nilwhen x 1 ---> --~ and to the homogeneous state ni2 when x I ---> 
+~,  where both homogeneous states are stable in bulk. It is immediately obvious that 

~'i = --Ki ( n i l )  = --Ki (ni2 ) (1.25) 
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and equality of the chemical potentials in the phases (see (1.5)) is therefore a necessary condition for 
a solution to exist. Moreover, if a solution exists, the Hamiltonian is constant along the trajectories and 
equal to the hydrostatic pressure in phase 1 and 2. Consequently, a further necessary condition for a 
solution to exist (see (1.6)) is obtained. 

Now let conditions (1.5) and (1.6) be satisfied. Trajectories which tend to the point n i = nil , Pi = 0 
(to the point n i = nt2,Pi = 0 respectively) whenx 1 ---> --** (x 1 --> +.o) occupy a certain N-dimensional 
submanifold Ml(/h~) in the hyperspace (1.25). In the general case, the intersection of M1 and M2 is one- 
dimensional, that Jis, it consists of one or several trajectories. 

It may be concluded that the static theory, based on the functional (1.7), reproduces the classical 
phase equilibrium conditions (1.5) and (1.6) and enables one to describe the fine structure of an 
interphase boundary. If a solution ni(x 1) is found, then it is possible to calculate the surface tension 

cy = ~ ( w -  H+~. in i )dx  I = ~ v,?iOlni~lnjdx I (1.26) 
_oo - ~  

If the substitution 

v i j __> ev o , f _...> e - i f  (1.27) 

is made in the equation of the theory, where e is a small, dimensionless, positive parameter, then, as 
1 an analysis of the equations shows, the distribution ni(E-lx + a), where a is an arbitrary constant with 

the dimensions of length, will be a new solution. The magnitude of the surface tension (1.26) does not 
change in this case. 

We will now consider the case of a one-component (N = 1) and assume that vn = const. For simplicity, 
we put z = nl, zx --: na~, z2 = n12, v = v11, k = kl, z2 > zx. The equilibrium equation has the integral 
(see (1.26)) 

1/2 V(~IZ)  2 -- f - ~,Z = ~ = - f ( z l  ) - ~'Zl 

The expression far ~lz 

OIz=(2v-IU) ~, U ( z ) = f + ~ . z + ~  

is easily found. 
A solution of the problem which has been formulated exists if the function U(z)  is positive in the 

interval from za to z2 and vanishes at the boundary points together with its first derivatives. On substituting 
the expression for ihz into (1.26), we obtain 

a = (2v) IA ~ ( U ( z ) ) ~ d z  

Zl 

The relation can be considered as a connection between the surface tension o and the phenomeno- 
logical parameter v. 

The structure o f a  ~:hin curved interphase boundary.  We will consider the situation when there is an inter- 
phase domain which separates states nil and nt2, which are thermodynamically stable in bulk. The substitution 
(1.27) can be made. Then, in the limit as e --> 0, the interphase region degenerates into a certain smooth 
surface P. Let ~,a be a normal to the surface P which is directed from phase 1 to phase 2 and let C A be 
coordinates on the surface P. The surface P and the normal ~,a are then specified by certain equations 

X a = x a ( ~ A ) ,  ira . ~ a ( ~ A )  

For small values of e, we introduce, in the neighbourhood of P, the curvilinear coordinatesy a by the 
formulae 

_~( a.e3" 
xa = X a ( y a ) + ' l  y ) y" 

A distribution density in the form 

n i = n ° ( y a ) + E n ~ ( y a ) + . . .  
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can be sought in the region of phase separation in accordance with the results on the structure of a 
straight interphase boundary when solving the equilibrium equations (1.3). 

By analogy with this, the phase characteristics must be expanded in series 

nic = nO + En]c + .... C = 1, 2 

We rewrite the differential operators in Eqs (1.11) in the curvilinear coordinates ya. If we confine 
ourselves to the lowest two orders in the expansion with respect to e then, instead of (1.13), it is sufficient 
to consider the system of equations 

--21 vii,kD3niD3n j -D3(VikD3ni)-E~VikD~ni+f,k+E~'k = 0 , .  . . ~ i  = E  - I  ~i +Xli + . . 0  . (1.28) 

Here, I] = 13(~ A) = g°bAs, g.o = DAXaDaX a is the first fundamental form of the surface e and baB = 
D A X ~ D ~  is the second fundamental form of the surface P [7]. 

Analysis of the system of equations (1.28) when y3 ___> +oo leads, as earlier, to the equalities ek /=  
- f i (nn)  = -fi(ni2) which hold in the lowest two orders with respect to e. This again gives the conditions 
of phase equilibrium (1.5). When this is taken into account, from (1.28) and (1.1) we derive the relation 

P(nil ) - p(ni2 ) + ~ ~ v i jD3niD3njdy  3 = 0 

If the definition (1.26) is used, the Laplace relation for the capillary pressure jump [8] 

P(nil ) - p(ni2 ) + ~G = 0 

is reproduced with the framework of the theory being developed. 

2. We will now consider the dynamic processes in a multicomponent mixture. In order to describe 
the isothermal hydrodynamics of a multicomponent mixture it is natural to use the conservation equa- 
tions for the components and the equation of the momenta for the medium as a whole [5] 

3,n i +a,,l~' = 0 (2.1) 

b., , .  = ~bp ,b  
p ( a t 1 9 "  + 1) Oh1) ) - pa,,~ (2.2) 

Here,/~/is the flow of molecules of the ith component in the mixture, ~a = p-lmiPi i is the mean mass 
ab velocity, p is the stress tensor and at is a derivative with respect to time. 

To construct a closed hydrodynamic model it is necessary to give expressions for the stress tensorp ab 
and for the diffusion fluxes Q~ =/~/-  ni'o a. 

It is convenient to define the dynamic stress tensor as the sum of the static stress tensor o ab (Section 
1) and the viscous stress tensor x ab. 

pab = (~ab + ,cab 

=q8  a~.~) +bt a.~ h +ab~ ~ 2 8.bac~ ~ 
3 

where rl > 0 is the bulk viscosity of the mixture and Ix > 0 is the shear viscosity of the mixture. We shall 
impose the no-slip boundary conditions 

~" [an = 0 (2.3) 

which are conventional in the theory of a viscous fluid, on the velocity 12 a. 

In the case of the diffusion fluxes we shall require that the no-flow boundary condition is satisfied 
on the boundary aD 

Qa la i = 0 (2.4) 
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We shall also as,mine that the boundary conditions (1.12) are satisfied. 
We introduce the notation Qi = OaQ~and define the total energy of the system, E, as the sum of the 

kinetic energy of the mean mass flow and the free energy (1.7) 

E = 1_ f Ou~.o~dV + F 
2 0  

(2.5) 

We will now calculate the time derivative of expression (2.5) To do this, we put 

Ua = "oa dt' qi = -Oi dt 

in formulae (1.14) and (1.17) and use formula (1.19). Then, when account is taken of Eqs (2.1) and 
(2.2) and the boundary conditions (1.14) and (2.3), we obtain 

d e  = E, + E 2, E t =--~ X~bO,x)bdV, e 2 = - ~  ~iQidV 
dl D D 

We will determirte the quantitiesxTq using formulae (1.13) and then determine the quantities Wi = 
(~i  + 2q.), Si = (Wi -" mimj%(mkmk)-  ). According to (2.4), the expression for E2 can be transformed to 
the form 

E 2 = - ~  SiQflV (2.6) 
D 

We now define the diffusion fluxes by means of the implicit formula 

Qi = 8Si (2.7) 

in which 8 is a cer t ,1  positive quantity. With this definition, dE/dt <<- 0 according to (2.6) and the dynamic 
model which has been constructed turns out to be stable. The implicit definition (2.7) is sufficient to 
solve the dynamical equations. The diffusion fluxes can be found in explicit form from the solution of 
the Neumann problem 

Qa = O ,,Zi, Azi = Qi, Ok / Ol Ioo = 0 

The set of steady solutions of the hydrodynamic equations (2.1) and (2.2) for which there is no mass 
transfer (a) a = 0) are identical with the set of solutions of problem (1.11), (1.12). 

Actually, if conditions (1.11) and (1.12) are satisfied and x) a = 0, then the conditions of mechanical 
equilibrium (1.21) a~re satisfied and Eqs (2.1) and (2.2) are obviously satisfied. 

On the other hand, let the conditions of mechanical equilibrium be satisfied and suppose Qi = O. 
Then, ~'i = mih, where h = miq~i(mkmk) -1. Using identity (1.20), we obtain ~ah = 0 from which the 
equality h = 0 follows, when account is taken of (1.13). 

3. Thus, a hydrodynamic model of a multicomponent liquid or gas has been constructed which 
describes phenomena in narrow pores and thin layers using the methods of mechanics of continuous 
media. In the case of steady equilibrium states, the model is equivalent to a description based on the 
functional (1.7) which adequately reproduces the structure of the surface layers and the interphase 
regions. The dynamical equations describe non-linear processes of relaxation to equilibrium states. 
Unlike the conventional hydrodynamics of a multicomponent viscous mixture, the mean mass transfer 
equations are of a higher order with respect to the spatial derivatives, while the diffusive transfer 
equations have the form of reaction-diffusion equations. 

Note that the consi;stency with the steady-state theory of Section 1 establishes the hydrodynamic model 
in a non-unique manner. Thus, instead of the material relation (2.7), the expression 

Q~ = -DijO,,Si (3.1) 

can be postulated, where the symmetric matrix Dij satisfies the supplementary conditions: (a) m.,Dij = 
0, (b) Dija,aj >- 0 for any vector a i from the (N - 1)-dimensional subspace miai = 0. Formula (3.1) 
corresponds to the classic approach in the sense that it leads to the conventional diffusion equations 
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[9] when v 0 = 0. However, when v o ~ 0, the differential equations for the concentrations, which are of 
the fourth order in the spatial derivatives, follow from formulae (3.1). The hydrodynamic model proposed 
in Section 2 is minimal from the point of view of the order of the equations and the number of 
phenomenological coefficients. 
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